Forums » Off-Topic Discussions

Computer-Aided Design (CAD)

    • 3250 posts
    November 6, 2022 9:09 PM EST

    Computer-aided design (CAD) involves creating computer models defined by geometrical parameters. These models typically appear on a computer monitor as a three-dimensional representation of a part or a system of parts, which can be readily altered by changing relevant parameters. CAD systems enable designers to view objects under a wide variety of representations and to test these objects by simulating real-world conditions.To get more news about cad and cam systems, you can visit shine news official website.

    Computer-aided manufacturing (CAM) uses geometrical design data to control automated machinery. CAM systems are associated with computer numerical control (CNC) or direct numerical control (DNC) systems. These systems differ from older forms of numerical control (NC) in that geometrical data are encoded mechanically. Since both CAD and CAM use computer-based methods for encoding geometrical data, it is possible for the processes of design and manufacture to be highly integrated. Computer-aided design and manufacturing systems are commonly referred to as CAD/CAM.
    image
    THE ORIGINS OF CAD/CAM
    CAD had its origins in three separate sources, which also serve to highlight the basic operations that CAD systems provide. The first source of CAD resulted from attempts to automate the drafting process. These developments were pioneered by the General Motors Research Laboratories in the early 1960s. One of the important time-saving advantages of computer modeling over traditional drafting methods is that the former can be quickly corrected or manipulated by changing a model's parameters. The second source of CAD was in the testing of designs by simulation. The use of computer modeling to test products was pioneered by high-tech industries like aerospace and semiconductors. The third source of CAD development resulted from efforts to facilitate the flow from the design process to the manufacturing process using numerical control (NC) technologies, which enjoyed widespread use in many applications by the mid-1960s. It was this source that resulted in the linkage between CAD and CAM. One of the most important trends in CAD/CAM technologies is the ever-tighter integration between the design and manufacturing stages of CAD/CAM-based production processes
    The development of CAD and CAM and particularly the linkage between the two overcame traditional NC shortcomings in expense, ease of use, and speed by enabling the design and manufacture of a part to be undertaken using the same system of encoding geometrical data. This innovation greatly shortened the period between design and manufacture and greatly expanded the scope of production processes for which automated machinery could be economically used. Just as important, CAD/CAM gave the designer much more direct control over the production process, creating the possibility of completely integrated design and manufacturing processes.

    The rapid growth in the use of CAD/CAM technologies after the early 1970s was made possible by the development of mass-produced silicon chips and the microprocessor, resulting in more readily affordable computers. As the price of computers continued to decline and their processing power improved, the use of CAD/CAM broadened from large firms using large-scale mass production techniques to firms of all sizes. The scope of operations to which CAD/CAM was applied broadened as well. In addition to parts-shaping by traditional machine tool processes such as stamping, drilling, milling, and grinding, CAD/CAM has come to be used by firms involved in producing consumer electronics, electronic components, molded plastics, and a host of other products. Computers are also used to control a number of manufacturing processes (such as chemical processing) that are not strictly defined as CAM because the control data are not based on geometrical parameters.

    Using CAD, it is possible to simulate in three dimensions the movement of a part through a production process. This process can simulate feed rates, angles and speeds of machine tools, the position of part-holding clamps, as well as range and other constraints limiting the operations of a machine. The continuing development of the simulation of various manufacturing processes is one of the key means by which CAD and CAM systems are becoming increasingly integrated. CAD/CAM systems also facilitate communication among those involved in design, manufacturing, and other processes. This is of particular importance when one firm contracts another to either design or produce a component.

    Modeling with CAD systems offers a number of advantages over traditional drafting methods that use rulers, squares, and compasses. For example, designs can be altered without erasing and redrawing. CAD systems also offer "zoom" features analogous to a camera lens, whereby a designer can magnify certain elements of a model to facilitate inspection. Computer models are typically three dimensional and can be rotated on any axis, much as one could rotate an actual three dimensional model in one's hand, enabling the designer to gain a fuller sense of the object. CAD systems also lend themselves to modeling cutaway drawings, in which the internal shape of a part is revealed, and to illustrating the spatial relationships among a system of parts.

    • 1 posts
    November 9, 2022 3:49 PM EST

    Computer-aided games and schedules are promoted for the targeted element for future times. Partners of the computer visited academadvisor.com for the hoisted goals. Shifts are done for the behest of the goal and the paved way for the change for the time-bound challenges.