For robots to move and interact with their environment, they require some form of programming, which takes inputs. Depending on those inputs, you can then configure outputs such as lights, motors, and beepers. The simplest robots with advanced motors (such as servos and steppers) can accept numeric instructions to perform an action, such as a CNC, which is told to move in a certain way.Get more news about Touch Spring,you can vist our website!
More intelligent robots, however, are capable of determining the nature of their environment and take action accordingly. For example, a robot with a light detector could locate light sources and stay near them, so that it can use a solar panel to charge its internal batteries. Sensors can be used for many more things than just responding to simple stimuli; they can be used to balance a robot with accelerometers, determine how much pressure to hold an object with, or even recognize its creator and respond accordingly.
As we are still in the beginner stages of robotics, we will look at a very simple sensor that can be very useful in many robot designs: the spring antenna.
The Spring Antenna
If there’s one thing that most insects have, it’s an antenna. There is a great reason for this: antennae are incredibly versatile and can sense many different stimuli. While the most apparent use of antennae is to objects directly in front of something, they are capable of detecting pheromones, chemicals, and even timing for migration reasons (depending on the species). In robotics, a pair of antennae can be used as a method for object avoidance by signaling when an object has been touched.
Creating a spring antenna is incredibly simple and requires no specialist sensors – a piece of wire is all you need! The antenna that feels objects extends outward from the robot and is connected to the robot controller input and tied to power via a resistor, while a wire spring is connected to ground and encases the bottom section of the antenna. When the antenna makes contact with an object, it deflects the object and makes contact with the spring sheath, which closes the circuit and pulls the microcontroller input low.